Recommended

Supercharge Dataverse with Python and Pandas

Introducing DataversePython: A Powerful Python Client for Microsoft Dataverse Dataverse is the heart and soul of Microsoft Power Plat...

How To: get_rows() in DataversePython

How to Use the get_rows() Method in DataversePython

The get_rows() method in the DataverseClient class is a powerful tool for retrieving data from Microsoft Dataverse entities directly into a pandas DataFrame. This article will walk you through its usage, parameters, and provide practical examples to help you get started.


What is get_rows()?

The get_rows() method allows you to query any Dataverse entity (such as accounts, contacts, or custom tables) and return the results as a pandas DataFrame. This makes it easy to analyze, filter, and manipulate your Dataverse data using Python's data science ecosystem.


Method Signature

get_rows(
    entity: str,
    top: int | None = None,
    columns: list = [],
    filter: str | None = None,
    include_odata_annotations: bool = False
) -> pd.DataFrame

Parameters Explained

  • entity (str, required):
    The plural name of the Dataverse entity you want to query (e.g., 'accounts', 'contacts').
  • top (int, optional):
    The maximum number of rows to retrieve. If not set, all available rows are returned.
  • columns (list, optional):
    A list of column names to include in the result. If empty, all columns are returned.
  • filter (str, optional):
    An OData filter string to limit the results (e.g., 'revenue gt 100000').
  • include_odata_annotations (bool, optional):
    If True, includes OData annotations in the response. Usually not needed for basic data analysis.

Basic Example: Retrieve All Accounts

from DataversePython.DataverseClient import DataverseClient

# Initialize the client with your configuration file
client = DataverseClient('sample_config.json')

# Retrieve all accounts
df = client.get_rows(entity='accounts')

print(df.head())

Example: Select Specific Columns

# Retrieve only the 'name' and 'emailaddress1' columns from accounts
accounts_df = client.get_rows(
    entity='accounts',
    columns=['name', 'emailaddress1']
)

print(accounts_df.head())

Example: Filter Results

# Retrieve accounts with revenue greater than 100,000
filtered_df = client.get_rows(
    entity='accounts',
    filter='revenue gt 100000'
)

print(filtered_df.head())

Example: Limit Number of Rows

# Retrieve only the first 10 contacts
contacts_df = client.get_rows(
    entity='contacts',
    top=10
)

print(contacts_df)

Example: Combine Parameters

# Retrieve the top 5 accounts with a filter and specific columns
custom_df = client.get_rows(
    entity='accounts',
    top=5,
    columns=['name', 'accountnumber'],
    filter="statecode eq 0"  # Only active accounts
)

print(custom_df)

Error Handling

If the request to Dataverse fails (e.g., due to authentication or network issues), an exception is raised and the error is logged to DataverseClient.log. Always check this log file for troubleshooting.


Tips

  • Always use the plural form of the entity name (e.g., 'accounts', not 'account').
  • For advanced filtering, refer to the Microsoft Dataverse Web API documentation.
  • Use the VSCode DataWrangler Extension and Jupyter notebooks for interactive data exploration.

Conclusion

The get_rows() method is a flexible and efficient way to bring Dataverse data into your Python workflow. With support for filtering, column selection, and pagination, it enables powerful data analysis and automation scenarios.

Happy coding!

No comments:

Post a Comment